
Why Most Domain Models are Aspect Free

 Friedrich Steimann
Universität Hannover

Institut für Informationsysteme
 Fachgebiet Wissenbasierte Systeme

Appelstraße 4, D-30167 Hannover

steimann@acm.org

DISCLAIMER
This is not a paper against aspects. In fact, I take my hat off
to the people who have given us ASPECTJ and all the other
excellent tools that have made AOP become reality and let
us all find out for ourselves what aspects can do for us. This
is not even a paper against aspect-oriented modelling. Quite
the contrary: the way we model today (and presumably also
the way we will model tomorrow) is inherently aspect-
oriented, and the development of reliable weaving tech-
niques is—in my view—at the core of MDA. It is however a
paper against the belief that the aspects of AOP are model-
ling concepts that—on the same level as classes, attributes,
and methods—are readily identified in every problem do-
main if only one looks at it with the right glasses on.

1. INTRODUCTION
Since the term AOP came public at ECOOP in 1997, work-
shops and conferences on aspect-related matters have liter-
ally mushroomed. Today we witness attempts to rewrite
large parts—if not all—of software engineering to become
aspect oriented: aspect-oriented design, aspect-oriented
modelling, aspect-oriented requirements engineering, and
so forth. One may ask oneself whether this enthusiasm is a
sign of something revolutionary having been discovered, or
just a symptom of the general pressure felt by the OO
community to come up with something suitable to fill the
hole called “post OO”. Does aspect orientation really come
with the substance necessary to found a new software de-
velopment paradigm, or is it just another term to feed the
old buzzword-permutation based research proposal genera-
tor?

That aspects can revolutionize software engineering analo-
gous to the way objects did would require that aspects are
an equally general notion, one that applies to the domains
hosting computing problems as well as to the technology
used to solve them. At first glance, this would seem case:
when looking at a problem, we usually find that it has
many aspects, that indeed every aspect comes with its own
set of problems. We can even say that the objects of a do-
main themselves have different aspects, so that viewing
aspects as a primitive concept of object-oriented software
development would only seem natural.

Yet an aspect is immanently something observed of an ob-
ject (or a problem), it is not itself one (or part of one). This is
also reflected in natural language, where we usually speak
of the aspects of something, not of the aspects in something.
In fact, it seems that aspects reside one level above what is
being looked at or, in other words, that aspects are a meta-
level construct. Although aspects are not alone in this re-
gard, I will argue below that this—together with a few
other peculiarities—explains why we cannot expect to find
aspects (at least not in the aspect-oriented sense) in any but
a few rather special problem domains.

The remainder of this paper is organized as follows. First I
identify different uses of the term aspect as relevant in the
context of modelling. As I will argue, these uses are either
better covered by other concepts or lie outside the subject of
a model, i.e., do not refer directly to the modelled domain.
Based on these findings I attempt a theoretical argumenta-
tion explaining why aspects (in the aspect-oriented sense)
are necessarily second-order constructs and hence extrinsic
to the problem domain and its models, which focus on the
nature (the intrinsic properties) of the things being looked
at. A discussion of my thesis with some of the relevant lit-
erature concludes my position.

2. DIFFERENT USES OF THE TERM
ASPECT IN MODELLING

While technically the concept of an aspect is unambigu-
ously defined by the aspect-oriented (modelling) language
being used, conceptually it is not: people have different
conceptions of what an aspect is and, consequently, of how
and where it can be identified in a given subject matter.
This is only natural since aspect is a general term in broad
use not only in software engineering, but also in everyday
conversation; like the term object before, it is readily
adopted by everyone, but acceptance and popularity come
at the price of precision.

What follows is a brief discussion of the different uses of
the term aspect as used in software modelling. The discus-
sion may be incomplete, yet I believe it covers the most im-
portant points being taken in the literature.

2.1 Aspects as Roles
Long before AOP, the database and the conceptual model-
ling community discovered that objects can have different
facets, perspectives, roles, or aspects [14]. The classic example
of a class whose instances have many roles1 is Person: Em-
ployee, Employer, Customer, Student, and so forth. Many
different ways to deal with roles have been proposed; most
frequent are approaches that treat roles as subtypes, as su-
pertypes, as a combination of both, or as adjunct instances
[15]. All share the same least intent: to let an object have
different properties in different contexts at different times.

There is however another important aspect to roles: objects
of different types having same properties. For instance,
many things in a modelled domain may be billable (play
the role of a Billable), but these things need not be natu-
rally related. On the programming side, we have roles such
as Serializable, Comparable, Printable, etc., which are
implemented by the most different classes. Technically,
these are all role types allowing assignment compatible ob-
jects of otherwise arbitrary types to play the associated roles
in the context of serialization, comparison, and printing,
respectively. Conceptually, there is no difference between a
document’s being printable and a person’s being employ-
able; both require that the objects have certain properties
that enable their functioning in the context defining the role.
These properties are comprised in a corresponding role
type.

Role types complement the natural partitioning of a prob-
lem domain (based on the natural types of objects, i.e., their
classes) by one that is based on relationships and the con-
texts they produce. Given that roles partition a domain, one
might argue that they crosscut it in the sense that they let
several otherwise unrelated classes share same properties.
However, although these properties are same, they are usu-
ally realized differently, reflecting the different nature of
the objects possessing them—they are in fact polymorphic.
Factoring out different implementations to a single place as
suggested by an aspect-oriented approach would seem in-
apt, since it would contradict the most basic object-oriented
principles.2 Instead, interfaces (specifying protocol, but
lacking implementation) and multiple (interface) inheri-
tance readily lend themselves to representing roles and role
playing, respectively, with mix-ins stepping in to allow for

1 In order not to confuse aspects and roles (which basically

mean the same thing in this subsection, but do not in the
remainder of this paper), we use the term role here.

2 In fact, it would effect to reversing the Replace Conditional
with Polymorphism refactoring [3]: code treating different
objects differently would not be attached to the objects,
but located in a single place, a conditional (typically a
switch statement) branching on the type of the objects. Al-
though aspects could be made polymorphic (cf. Section 4),
this does not better the situation, since the definition of
role-playing objects would remain scattered.

the inheritance of code wherever deemed appropriate [16,
17].

In object-oriented software modelling, roles are tied to col-
laborations: they specify what it takes for a single object to
contribute to fulfilling some joint system functionality. Col-
laborations are based on interactions of objects; specifica-
tion of such an interaction is typically not tied to a single
role, but is distributed over all that contribute. Aspects on
the other hand are typically defined orthogonally of one
another; in fact, it is the very spirit of aspect orientation that
aspects remain ignorant of each other. It follows immedi-
ately that modelling the roles of a system as aspects works
only in cases where roles are isolated and monomorphic.3

All this in not to say that aspect technology has nothing to
contribute to role modelling. In fact, role-oriented model-
ling (in the spirit of OORAM [13]) requires some kind of
weaving, since it is not sufficient that the objects (of the
classes) playing the roles of a collaboration guarantee to
conform to the interface specification (or contract) associ-
ated with each role: the way the state of the same object
playing different roles at the same time is to be shared or
kept separate must also be specified. Because roles of differ-
ent collaborations are defined largely independently of each
other, some kind of weaving has to be performed when
merging the different roles into the implementation of one
class. However, given that every class implements its roles
differently (the general case), it is difficult to conceive how
aspect weaving mechanisms can help without major modi-
fications. Aspectual collaborations [7] address these prob-
lems in some detail, but use roles in the specification of as-
pects, without equating the two concepts (cf. discussion in
Section 4).

To summarize: a role is a named type specifying a cohesive
set of properties whose specification is determined by the
collaboration with other roles and whose implementation
by different classes is typically polymorphic. Although con-
ceptually a role of an object can be viewed as an aspect of it,
this aspect is typically not one in the aspect-oriented sense.

2.2 Aspects as Ordering Dimensions
Ever since Aristotle, taxonomical orderings have been re-
garded as useful for structuring complex domains. How-
ever, the problem with taxonomies is that they can be based
on different criteria, which may be independent of each

3 One might argue that there are roles whose implementa-

tion is the same throughout, so that they are naturally
represented by aspects. For instance, “having an address”
(role Addressee) is something that applies to the most dif-
ferent objects, but has the same implementation every-
where. However, this does not preclude Addressee from
being modelled as a role, particularly as this would allow
its objects to participate in a send collaboration (with roles
Addresser and Addressee), which the aspect does not. Cf.
the discussion for more on this issue.

other. Different views (or aspects) on a domain may there-
fore lead to different orderings which, without one domi-
nating the other, are difficult—if not impossible—to unify.

The introduction of polyhierachies (and multiple inheri-
tance) combining several alternative classifications seems
an immediate remedy. On closer inspection, however, they
introduce more problems than they solve, since they tend to
obscure the original orderings they are trying to combine—
not without reason, major programming languages such as
JAVA and SMALLTALK have abandoned the concept. The Uni-
fied Modeling Language UML [10] on the other hand has a
special discriminator construct used to separate different
dimensions (“partitionings”) of a model’s generaliza-
tion/specialization hierarchies; however, as mere labelling
this has no further-reaching effect on the structure of a
model. In fact, keeping the dimensions separate (the aspect-
oriented way) seems to be the best bet for maintaining ac-
cessibility of the domain. However, this does not mean that
domains come with aspects, as the following reasoning
shows.

The archetypal domain having conflicting ordering princi-
ples is the taxonomy of species. Its traditional version is
based on externally visible properties such as number of
legs, reproductive system, etc. Although the discovery of
new species and even whole kingdoms requires reorganiza-
tion from time to time, biologists have managed to keep the
taxonomy in a strict tree form. Modern genetics however
has made it possible to reconstruct the evolutionary devel-
opment of the different species right from the first protists,
thereby creating a taxonomy based on common ancestors
rather than observables, entailing that it cannot be forced
into strict tree form. While both evolution and similarity can
be viewed as different aspects structuring the same problem
domain, we observe that neither of these aspects is itself an
element of the domain. Aspects as ordering principles de-
scribe the order, not the domain; hence, they reside one
level above what they order.4

2.3 Domain-Specific Aspects
It has been noted many times that literally all aspects dis-
cussed in the literature are technical in nature: authentica-
tion, caching, distribution, logging, persistence, synchroni-
zation, transaction management, etc. One may add that
these are all rather universal aspects, an observation that
naturally begs the question whether all aspects are general,
or whether there is such a thing as a domain-specific aspect.

4 This argumentation also applies to other abstraction

mechanisms such as classification and composition: an
object can be classified according to its natural type (e.g., a
Person, not a Thing) or to its technical type (e.g., an Ob-
ject, not a Class); it can be a component of another ob-
ject in the same problem domain, or of a deployment, etc.
None of the ordering dimensions are themselves part of
the ordered domain.

A comparison with classes springs to mind: while we have
general purpose, technical classes such as String, Vector,
and Exception in a program, we usually also have domain-
specific, non-technical classes such as Account, Loan, and
Currency; in fact, the latter are the classes that are being
modelled during the early phases of software development,
since they represent the problem domain.

On closer inspection, it becomes clear that the standard as-
pects are aspects of programming rather than aspects of the
domain the program is applied in: caching is a program-
ming problem, as are logging, security, transaction man-
agement, etc.5 In fact, we can observe that these aspects are
aspects of the solution and its artefacts, not of the original
problem. While this explains why the aspects are all techni-
cal (programming is a technical matter, and looking at it
from different perspectives necessarily reveals its technical
aspects), it also sheds a different light on domain specificity:
an aspect is considered domain-specific if it occurs only in
few, rather special programming problems. Note that the
same domain specificity can be observed of classes: Thread
for instance is specific to domains that exhibit concurrency,
and it is technical (part of the solution, unlike for instance
PatientRecord, which is a domain-specific, non-technical
class).

Seen this way, we can expect to find new aspects while we
address new problems (e.g., aspects of compiler construc-
tion, aspects of middleware, aspects of webs services, etc.),
but these aspects will be domain-specific only in the sense
that they address a programming problem that is specific to
the domain—they are not themselves part of the domain. In
fact, we can expect that every framework comes with its
own set of aspects, and aspects will keep being discovered
as long as technological advances are being made. But
most—if not all—of these aspects will be specific to the
technical solution (the “domain”, if you will), not to the
concrete problem it is applied to.

2.4 Aspects of Modelling
Now if the aspects we find when programming are aspects
of programming, not of the programmed problem, then we
may expect that the aspects we find when modelling are
really aspects of modelling. And indeed, the aspects we can
immediately identify are aspects of such kind: a static and a
dynamic aspect, a component view, a use case view, etc.
The fact that it has aspects is part of the nature of model-
ling, as it is part of the nature of programming; however,

5 Having said this, we note that sometimes a technical as-

pect has a parallel in the problem domain: in the perennial
ATM example, for instance, transactions and logs are also
entities that occur in the problem domain. However, these
are in the same league as customers, accounts, and termi-
nals: they are neither crosscutting nor do they exhibit
other aspect-oriented peculiarities, so that they would
preferably be implemented as ordinary types.

this provides no evidence that there are aspects in the do-
main being programmed or modelled, unless in very spe-
cial cases (for example if the modelled domain is modelling
itself).

Undoubtedly, modelling (much more than programming)
requires some kind of weaving, since every model (model
here defined as a single diagram) usually specifies only one
tiny aspect of a modelled problem. In fact, I would conjec-
ture that the weaving of diagrams (as partial models) is one
of the key issues to be addressed if modelling is to deliver
on its promises, MDA especially. I suspect that much can be
learnt from AOP that can be extremely helpful in develop-
ing object-oriented modelling into a truly useful discipline,
but I would expect none of this to relate to the level of the
actual model, that is, to the conceptualization of the prob-
lem domain.

Given that roles have properties that make them unsuitable
for being modelled as aspects, that the ordering function of
aspects lifts them one level above the problem domain, and
that the aspects we know of are really aspects of the solu-
tion and its technology rather than the underlying problem
domain, are we ready to conclude that most domains are
aspect free? No, since it could be the case that there are as-
pects I have forgotten to mention or that we do not even
know of yet. What we really need is a line of reasoning
making the claimed non-existence plausible or, better still, a
proof of thereof.

3. REASONS FOR NON-EXISTENCE
There appears to be broad consensus in the conceptual, the
data, and the software modelling community that the world
be viewed as interrelated objects with attributes and behav-
iour. According to this view, objects are abstractions of real
world entities (where we must be aware that even the con-
cept of an entity is an invention of the mind), and their
properties describe how entities appear, how they relate to
others, and how they behave. While objects are the subjects
of modelling, properties are “about” (or “above”, which is
the same word in German) them: not coincidentally, the
most successful formalization of natural language, predi-
cate logic, distinguishes between objects (zeroth-order ex-
pressions) and propositions about them (first-order expres-
sions). As an aside, it is interesting to note that reality itself
is usually free of propositions, unless of course “reality”
(the modelled domain) is language.

3.1 The First-Orderedness of Domain Models
Being a picture of reality, a domain model consists of ob-
jects (representing the perceived entities of the real word)
and propositions about them. In particular, a pure domain
model contains no propositions about propositions, since
these would describe the model rather than reality. As it
turns out, first order predicate logic is the natural language
of domain models, even in presence of object-orientation,
i.e., typing, generalization, and inheritance. The following
explains why this is so.

The standard semantics of object-oriented modelling maps
the objects of a model to elements of the modelled domain.
Types are mapped to unary predicates (called type predi-
cates) serving as membership functions: an object o is an
instance of type T iff T(o) is true. Attributes correspond to
functions associating certain elements (the objects) with
others, their attribute values. Relationships between objects
are mapped to binary or higher arity predicates, specifying
tuples of elements that go together. Methods can be viewed
as temporary relationships that objects engage in while col-
laborating; they introduce dynamics to a model in that they
have the ability to alter existing relationships and attribute
values as the result of their execution. [18]
The generalization of types expresses type inclusion, i.e.,
the fact that elements of one type are always (and necessar-
ily) also elements of another type. More specifically, that T
is a subtype of U maps to

)()(: oUoTo →∀ (1)

where o ranges over all objects in the domain and T and U
are the corresponding type predicates. From this, the se-
mantics of generalization, the inheritance of properties, fol-
lows immediately: whatever is asserted of objects of type U
must also hold for objects of type T.

Because sentences of the form of Eq. 1 occur repeatedly in
object-oriented models (they express the type hierarchy),
one is led to view them as instances of a second-order rela-
tionship, one that relates types (and thus predicates) rather
than objects. In fact, in a model we would not write Eq. 1,
but

 T < U (2)

or something alike. However, generalization as a second-
order relationship is only extensionally defined (i.e., by list-
ing all its elements)—it rolls out to a finite set of first-order
formulas of the kind of Eq. 1. And indeed, even though Eq.
2 suggests that that type T inherits the properties from type
U (matching the operational semantics of many popular
programming languages), it is really the objects that in-
herit.6 Inheritance is a proposition about objects and, thus,
first order.

It is an interesting result of mathematical logic that that
many-sorted (typed) and also order-sorted (object-oriented)
logic are no more expressive than their uni-sorted forerun-
ner: as long as they do not quantify over propositions, they
are all first order, i.e., their sentences consist of objects (ze-
roth order) and propositions about them (first order) [9].
Thus, the fact that a model is object-oriented does not ne-
gate that it is a pure domain model in the above sense. As
we will see, this is generally not the case for aspect-oriented
models, which typically quantify over open (potentially
infinite, in any case intensionally defined) sets of proposi-
tions.

6 If anything, types inherit the declaration of properties.

3.2 The Second-Orderedness of Aspects
Frankly, the claim is that aspect-oriented languages are es-
sentially second-order languages, so that their models are
no pure domain models in the above sense. The second
order follows from the fact that it is necessary for an aspect
to be able to make propositions about propositions. In
ASPECTJ, this is reflected in the fact that an aspect definition
usually contains clauses specifying where the aspect applies,
and this specification involves variables (wildcards and
other constructs) ranging over classes, methods, and control
flow. Mathematically, this is comparable to a second-order
predicate logic in which variables may range not only over
objects, but also over predicates and functors. In fact, an
aspect of AOP saying that a certain procedure or code frag-
ment a (for action or advice) is to be executed with all meth-
ods satisfying some predicate s (for selection) translates to an
expression of the form

)),...,(),...,(()),...,((

:),...,(

111

1

nnn

n

xxaxxmxxms
Mxxm

→→
∈∀

 (3)

where M corresponds to the set of methods of a program.
Note that Eq. 3 is not a first order formula: while a is a first-
order predicate specifying the advice of the aspect (the
what), s is a second-order predicate selecting certain meth-
ods (specifying the where) quantified over the predicate
variable m(…). Note that this way the specification of the
advice a has access to the parameters of the methods m it
applies to (but a need not make use all parameters of m).
Without resorting to the second order, the parameters of an
aspect cannot be bound to the parameters of the methods
they apply to; the aspect remains isolated and hence use-
less.

Theory aside, it is easy to see that in practice the processing
of an aspect requires reasoning about and involves manipu-
lation of a program, that AOP is de facto a meta-program-
ming technique (an observation that equally applies to as-
pect-oriented modelling). On the other hand, in order to
actually do something every aspect must contain expres-
sions (method calls etc.) that are on the same level as the
items it is an aspect of. Since an aspect always (and neces-
sarily) consists of both, a what and a where part, there can be
no aspect without a meta-level.

On the other hand, postulating that there are (also) aspects
in a first-order language (on the same level as other proper-
ties, namely types, attributes, relationships, and methods)
would either force us to

a) explain what an aspect of an aspect is (or else exclude
self-application of the concept), or would

b) require that the where part of these aspects applies to
propositions one level below the other properties.

As for the latter: both modelling and programming usually
start at the level of types; there are no propositions of a
lower level so that the subject of first-order aspects would
have to remain imaginary. As for the former: the only con-
stellation in which I find aspects of aspects easy to conceive

is if aspects are themselves the subject matter. However,
these aspects must then be a weaker concept than the as-
pects of aspect orientation, since there are no aspects they
could be applied to (there is no lower level and applying
them to themselves or to their second-order relatives would
open the door for paradoxes or ill-definedness, as the his-
tory of mathematical logic has taught [20]). It follows that
first-order aspects are unlikely to exist and, because pure
domain models are first order, that these models are aspect
free.

4. RELATED WORK
In order to exclude certain paradoxical expressions involv-
ing negation and self-reference Russell introduced types to
set theory and mathematical logics [20]. His type theory has
led to the distinction of first and higher-order logics and—
by generalizing the type concept—to the introduction of
many and order-sorted logics (the latter being the logical
equivalent to the type systems of OOPLs such as C++ and
JAVA). Interestingly, as stated before many and order-
sortered logics are both first order [9].

Somewhat related to Russell’s introduction of types is the
work of Tarski and Carnap, who found in their investiga-
tions on the concept of truth that when speaking about sen-
tences in a language we must cleanly separate between ob-
ject and metalanguage [19]. According to this distinction,
the former is the language used to speak about objects the
in the world, while the later is used for the analysis of the
former. Metalanguage is inherently more expressive than
object language, since it must contain all sentences of the
former plus a notion of truth and corresponding logical
operations. Natural language permits paradoxes of Rus-
sell’s kind only because object and metalanguage are the
same. While all languages are products of the mind, the
subject matter of object language is the real word, whereas
that of metalanguage is itself language and as such un-real
(in the literal sense of the word).

Lopes et al. have pointed out that the ability to reference
parts of a program (the programmatic equivalence of lin-
guistic anaphora) is a (if not the) key contribution of aspect
orientation [8]. Being able to reference what has just been
said or done, they argue, is the natural way of keeping
specifications both concise and understandable. While I
could not agree more with this, I note that this raises the
programming language to the level of a metalanguage,
since it involves sentences about sentences. The subject mat-
ter of these meta-sentences is programming artefacts, which
are not themselves objects of the programmed domain.

The relationship of aspects and roles has been investigated
by several authors, for instance [4, 5]. Most of this work
regards roles as adjunct instances [15], separate objects
which are the bearers of role-specific state and behaviour,
but whose identity is amalgamated with that of the role
player. This would make role-related properties extrinsic to
the role-playing object (extrinsic in contrast to its own prop-
erties, which are commonly regarded as intrinsic). Contrary

to this view, I argue that the role-playing ability of every
object is intrinsic to it, since it must be made possible by its
nature. In fact, I prefer to view roles as abstract data types
specifying role-related properties and behaviour in the con-
text of one or more collaborations, with the implementation
being provided by classes (since different role player classes
will implement roles—or provide role-specific features—
differently). The role playing of an instance then amounts to
that instance being assigned to a variable typed with the
role (tantamount to the instance taking part in a collabora-
tion), letting instances pick up and drop roles dynamically.
Independent of how roles are being viewed, however, there
seems to be consensus that there are only few rather special
roles that can be covered by aspects ([4] and Section 2.1).

In contrast to its nature and its role-playing abilities (which,
as argued above, should be regarded as the intrinsic proper-
ties of an object) aspects in the aspect-oriented sense add
extrinsic properties and behaviour, namely features that are
attached to objects by reason lying outside their nature.7
This is why the definition of an aspect can be kept in one
place, with second-order expressions specifying where
these properties apply. It would appear that properties ex-
trinsic to the objects of a domain are also extrinsic to the
domain itself, since the domain consists of only objects and
their interactions; one could maintain, though, that it is
these interactions aspects focus on, but this has not become
evident so far (cf. below).

As for the claimed lack of polymorphism of aspects (Section
2.1): Ernst and Lorenz have argued that late binding of ad-
vice could be introduced, for instance based on the actual
(dynamic) type of the receiver of an intercepted method call
[2]. However, Footnote 2 applies in full. In fact, Ernst’s and
Lorenz’s exploration of the possibility to add late bound
methods to a statically binding language via aspects ([2,
Section 3.5]) is merely a theoretical contemplation and not
meant to inspire the design of new programming languages
based on late-bound advice rather than methods.

The relationship of aspects and collaborations (of which
roles represent the paricipants) mentioned in Section 2.1
also needs further discussion. The definition of an aspect
and, in particular, aspectual collaborations [7] can involve
roles, but these roles are not themselves aspects. Surely, one
could argue that if roles are valid modelling elements, then
it is hard to see why an aspect defining the roles should not
equally be considered as a domain-level concept. In fact, a
collaboration of objects is identifiable at the same level as
the objects themselves, and generalizing it (by introducing
role types as placeholders for role players) does not raise it
to a meta-level: for instance, Printing is a collaboration
that is on the same (domain) level as its roles Printer and
Printed. However, even though blending of collaborations

7 Note that aspects can be used to implement adapters for

classes (or entity types, see e.g. [11]) but this can also be
done with adapter classes and makes sense only if the as-
pect weaver is more flexible than the compiler.

and aspects is possible [7], the two are not the same concept
(after all, not all aspects involve roles); a Printing aspect
for instance would be largely infeasible, since the knowl-
edge of how to print/be printed is intrinsic to the role-
playing objects. The aspect could serve as a reification of the
collaboration, but this does not seem to be what aspects
were intended for. All that remains is to add extrinsic be-
haviour, which is likely to be extrinsic to the problem as
well.

On a wider scope other authors have suggested that aspects
are not only useful for programming, but also for the earlier
software development phases including analysis and re-
quirements engineering (e.g., [1, 12]). However, despite
several announcements to the opposite all examples pre-
sented so far seem to be concerned with non-functional
(rather than functional) requirements and as such pertain to
the solution of a problem, not to the problem domain. This
apparent shortage of examples of functional aspects could be
explained by the fact that most domain models are indeed
aspect free.

Of course my position could be proven wrong simply by
providing the counterexamples that are announced here
and there. However, I would conjecture that finding such
examples is not as straightforward as it might seem, since in
order to be sufficient a counterexample must fulfil the fol-
lowing criteria:

• the aspect must be an aspect in the aspect-oriented
sense (in particular, it must not be a role);

• it must not be an artefact of the (technical) solution,
but must be seen as representative of an element in the
underlying problem domain; and

• its choice must have a certain arbitrariness about it so
that the example provides evidence that there are
more aspects of the same kind, be it in the same or in
other domains.

5. CONCLUSION
Aspect-orientation has set off to augment all phases of
software engineering—and their artefacts—with the notion
of an aspect. This would include the analysis phase and
with it object-oriented modelling of a problem domain. Al-
though an actual proof would require more rigorous rea-
soning (including a complete and agreed upon formaliza-
tion of both domain models and aspects), I believe to have
made plausible that domain models are, under reasonable
preconditions, aspect free. This is in contrast to some of the
published literature, which seems to suggest that so-called
functional aspects exist in the same right and frequency as
their more popular, non-functional siblings. So far, I have
not come across any convincing examples of aspects of this
kind; however, I will gladly accept and discuss any sugges-
tion thereof.

6. REFERENCES
[1] J Araújo, A Moreira, I Brito, A Rashid “Aspect-oriented

requirements with UML” Second International Workshop
on Aspect-Oriented Modelling with UML (2002).

[2] E Ernst, DH Lorenz “Aspects and polymorphism in
AspectJ” in: Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development (ACM 2003)
150–157.

[3] M Fowler Refactorings: Improving the Design of Existing
Code (Addison-Wesley, 1999).

[4] KB Graversen, K Østerbye “Aspect modelling as role
modelling” in: OOPSLA '02 Workshop on Tool Support
for Aspect Oriented Software Development (2002).

[5] EA Kendall “Role model designs and implementations
with Aspect-Oriented Programming” in: OOPSLA
(1999) 353–369.

[6] BB Kristensen, K Østerbye “Roles: conceptual abstrac-
tion theory and practical language issues” TAPOS 2:3
(1996) 143–160.

[7] KJ Lieberherr, DH Lorenz, J Ovlinger “Aspectual col-
laborations: combining modules and aspects” The Com-
puter Journal 46:5 (2003) 542–565.

[8] CV Lopes, P Dourish, DH Lorenz, K Lieberherr “Be-
yond AOP: toward naturalistic programming” in:
OOPSLA'03 Special Track on Onward! Seeking New Para-
digms & New Thinking (ACM 2003) 198–207.

[9] A Oberschelp “Untersuchungen zur mehrsortigen
Quantorenlogik” Mathematische Annalen 145 (1962) 297–
333.

[10] OMG http://www.uml.org/

[11] A Rashid, P Sawyer, “Aspect-orientation and database
systems: an effective customisation approach” IEE Pro-
ceedings—Software 148:5 (2001) 156–164.

[12] A Rashid, P Sawyer, AMD Moreira, J Araújo “Early
aspects: a model for Aspect-Oriented Requirements
Engineering” RE (2002) 199–202.

[13] T Reenskaug, P Wold, OA Lehene Working with Ob-
jects—The OOram Software Engineering Method (Addi-
son-Wesley 1996).

[14] J Richardson, P Schwartz “Aspects: extending objects to
support multiple, independent roles” in: J Clifford, R
King (eds) Proceedings of the 1991 ACM SIGMOD Inter-
national Conference on Management of Data SIGMOD Re-
cord ACM Press, 20:2 (1991) 298–307.

[15] F Steimann “On the representation of roles in object-
oriented and conceptual modelling” Data & Knowledge
Engineering 35:1 (2000) 83–106.

[16] F Steimann “A radical revision of UML’s role concept”
in: A Evans, S Kent, and B Selic (eds) UML 2000, Pro-
ceedings of the 3rd International Conference (Springer 2000)
194–209.

[17] F Steimann “Role = Interface: a merger of concepts”
Journal of Object-Oriented Programming 14:4 (2001), 23–
32.

[18] F Steimann, T Kühne “A radical reduction of UML’s
core semantics” in: JM Jézéquel, H Hussmann, S Cook
UML 2002: Proceedings of the 5th International Conference
(Springer, 2002) 34–48.

[19] A Tarski “The semantic conception of truth and the
foundations of semantics” Philosophy and Phenomenol-
ogical Research 4 (1944).

[20] AN Whitehead, B Russell Principia Mathematica (Cam-
bridge University Press, 1910).

